Magnetic chucks include several types such as **electromagnetic chucks**, **permanent magnetic chucks and permanent electromagnetic chucks**, each having particular functional features.

In the machining industry, it has been known since the beginning of the 20th century to apply magnets to holding workpieces. In particular, recent technological development has expanded the scope of applications of magnetic chucks from only grinding machines to heavy duty cutting processes by machining centers, lathes, milling machines, etc. Today the applications have further been expanded to include metallic mold machining and electric discharge machining. Thus, the magnetic chucks that meet these high precision machining requirements play a very important role in many machining fields.

In addition to magnetic chucks, KANETEC offers chucks designed for nonmagnetic materials to respond to requirements in grinding of various materials. We believe you will find products in this brochure that meet your diversified needs.

		Application	Machine	Applicab	ne Chuck (Typical Model)	
Fc	Heavy duty cutting	Material rough machining	•Machining			
G	General cutting	 Material cutting General finishing 	center •Milling machine •Lathe		Electro Perma EP-Q, Perma (rounn Electro Perma	omagnetic: KETZ
¢ c	ight duty cutting	 Finishing (Straightening) 	machine	Electromagnetic: KETW Permanent electromagnetic: EPTW Electromagnetic (round): KEC-AR Permanent electromagnetic	Electromagnetic: KETN Electromagnetic (round): KEC-AS Permanent electromagnetic (round): EPC-AST Permanent magnetic: RMA-C	
pe 9	Heavy duty grinding	• Material grinding	•Rotary grinder	(round): EPC-AR Electromagnetic: KESI		
Aachining lo	General grinding	 General finishing Finishing (Straightening) 	•Belt grinder •Cylindrical		Permanent	agnetic: KET ant electromagnetic: EPT agnetic: KETL
F	Precision grinding	Precision finishing	grinder •Mold grinder	Permanent magnetic: RMWH Permanent magnetic (round):	Permanent magnetic (round): RMC, RMC-X	
E d n	Electric discharge nachining	• Mold machining	•Electric discharge machine	RMCW Super thin type RTH		
N n (Nonferrous nachining Weak magnetism)	Grinding/ cutting, etc.	•Machines in general	Nonmagnetic materials: Vacuum chuck KVR	MR Nonmagnetic materials: PROMELTA SYSTEM PRB	
			0	50 100	150 200	250 300

Types of Chucks by Applications

OVERVIEW OF MAGNETIC CHUCKS

Overview and Features of Chucks

Electromagnetic chuck	Electromagnetic shuck •• •• •• •• •• •• •• •• •• •• •• •• ••	
Water-cooled electromagnetic chuck	 Easy to make a larger type of the chuck. Constructed to reduce heat generated during power on by water cooling. Suitable for high-precision machining and exhibits features of electromagnetic chucks. Most suitable for dry grinding. (Heat from workpieces themselves is absorbed also.) 	Sine bar chu
Permanent	 Very efficient since workpieces can be attached/detached by switching operation. Energy-saving, since electric power is used momentarily for attaching (detaching underside can be attached). 	Vacuum chu
electromagnetic chuck	 High accuracy because of no thermal distortion due to heat generated during power on. No change in the holding power in the event of power failure while the workpicce is being held. 	PROMELTA system

ermanent nagnetic chuck	 Energy-saving type, requiring no power source. No fear of power failure and capable of holding workpieces for a long time. No heat generation and thus no thermal distortion due to temperature rise.
ine bar chuck	 Magnetic chuck equipped with a sine bar for high-precision grinding and inspection. Precisely finished to overall accuracy of 0.005 mm or better. Various types are available; electromagnetic, water-cooled electromagnetic, permanent magnetic and permanent electromagnetic chucks.
acuum chuck	 Holds workpieces by action of atmospheric pressure. Vacuum chucks nonmagnetic materials.
ROMELTA ystem	 Secures workpieces to a dedicated chuck using workpiece fixing agent. Secures nonmagnetic materials.

Types of Electromagnetic Chucks

Type Model		Application	Applicable Machine	Remarks	
With T-groove	KEZX	Heavy duty cutting	Machining center		
Super powerful type	KETZ	high-speed cutting	Milling machine		
Powerful waveform type	KETN	Cutting	Large planomiller	KEZX	
Lateral fine pitch type	KESL	Grinding, light duty cutting, belt grinding	Milling and grinding machine, mass-production saw blade grinder	KETZ	
Air-up type	KETB	Grinding			
Standard rectangular type	KET	Grinding, light duty cutting		KESL KET	
Micropitch type	KETW	Thin workpiece grinding	Grinder		
Tilt type	KET-U	Mold grinding			
Connecting and tilt type	KET-UT	Large workpieces, angular grinding of cutters		N MICH	
Pound two	KEC-AR	Ring pole: Grinding	Grinder, lathe, rotary grinder,	KEC-AR KEC-AS	
Round type	KEC-AS	Star pole: Cutting	turning machine (face lathe)		
Water ecoled type	KCT/KCT-U	Grinding	Grinder		
water-cooled type	KCC	Grinding, rotary grinding	Grinder, rotary grinder	кст-и ксс	

Types of Permanent Magnetic Chucks

Type Model		Application	Applicable Machine	Remarks
Powerful type	RMA	Cutting, heavy duty cutting	Milling machine	
For small and thin workpieces	RMAW	Light duty cutting and grinding of small and thin workpieces	Grinder, milling machine	
Standard type	RMT	Light duty grinding and cutting of thin to thick workpieces	Grinder, electric discharge machine	RMA RMT
Rectangular type, micropitch	RMWH	Fine-pitch grinding of small and thin workpieces, holding in liquid	Grinder, electric discharge machine	
Tilt type	RMT-U	Mold grinding	Grinder	RMWH RMT-U
Powerful round type	RMA-C	Cutting	Lathe	
Star-pole round type	RMC-X	Light duty outting, grinding	Grinder Jatha	
Standard round type RMC		Light duty cutting, grinding	Ginder, latte	
Round type, micropitch	RMCW	Universal grinding of thin to thick workpieces		RMC
Super thin type RTH		Light duty grinding and high-speed grinding	Grinder	
For cemented carbide	CMR	Grinding of weak magnetic materials such as cemented carbide		RMC-X RMCW
Rectangular type with jet hole	RMT-ED	Improved water tightness,		
Round type with jet hole	RMC-ED	securing workpieces during	Electric discharge machine	RTH
Rectangular type, micropitch	RMWH-ED	electric discharge machining		RMWH-ED

Types of Permanent Electromagnetic Chucks

Туре	Model	Application	Applicable Machine	Remarks
Powerful type	EP-Q	Heavy duty cutting,	Milling machine,	
Demagnetizing function type	EP-D	general cutting	machining center	
Rectangular type	EPT	Grinding		
Micropitch type	EPTW	Grinding thin workpieces	Grinder Lathe turning machine	EP-Q
Tilt type	EPZ-U	Mold grinding	14(110), (d 1111)g 11(4011110	EPTW EPT-AST
Round type	EPC	Turning, grinding	Cylindrical grinder, rotary grinder	EPT EPZ-U

Magnetic Chucks

Holding Power of Magnetic Chucks

The holding power varies largely depending on the type of magnetic chucks and material, thickness and attractive area of workpieces and distribution of mass and surface roughness of the attractive face of workpieces. The following graphs show typical examples; you can refer to them for tendency. Please note, however, that values differ slightly among chucks. Always locate workpieces in such a manner that the holding area is positioned over both the N and S poles.

Holding Power and Pitch between Poles

There is no absolute rule for selection of pitches suitable for workpieces. A general guide, however, is that the best condition for holding is that the thickness of workpieces is 2 to 4 times the pitch.

To attract a workpiece firmly, it should be placed over the N pole and S pole, and accordingly, the attractive face of workpieces must at least be 3 times the pitch.

An example of holding power << Permanent magnetic chuck>> Relation between material and holding power (1N≑0.1kgf)

An example of holding power <<Permanent electromagnetic chuck>> (1N≑0.1kgf)

Relation between thickness of workpiece and holding power

An example of holding power <<>Electromagnetic chuck>>> (1N≑0.1kgf)

Relation between thickness of workpiece and holding power

<<Chucks in general>>

 Difference in holding power materials (%) 	 Difference in holding power due to attractive surface roughness (%) 				
0 25 50 75 SS400	100(%)	0 25 SS400	50	75	100(%)
SUS430		SS400	$\overline{\nabla}$		
S45C		SS400	\bigtriangledown		•
S45C hardened		SS400	~		
SKH2			1		I
SKH2 hardened					
FC400					
FC200	I				

Selection of grinding fluid

The separator part of the chuck work faces is made of brass, resin, etc. Select grinding fluid that does not corrode these materials. For details, please consult with grinding fluid suppliers.

These magnetic chucks employ special resin for bonding attractive face structural members, instead of solder that is normally used, but is an environmentally hazardous substance.

%Use the Facsimile Communication Form (Selection Data) at the end.

Standards

The quality standards of electromagnetic chucks have been established as described in the right-side table for dimensional accuracy (flatness/parallelism), holding power, electrical performance (withstand voltage/insulation resistance/temperature rise limit) and water resistance including testing methods.

					(mm)	
Length or diameter of face plate	Up to 300	Over 300 up to 600	Over 600 up to 900	Over 900	Surface roughness: 6.3S	
Flatness	0.01	0.015	0.02	0.025		
Parallelism	0.02	0.03	0.04	0.05	would find face. Not convex.	
Holding power	The holding power on the chuck face plate must be 98.1 N (10 kgf) or over in average and 49 N (5 kgf) or over in the weakest					
Withstand voltage	Dielectric breakdown between the charged part and the body is not allowed. (1500 VAC, 1 min.)					
Insulation resistance The insulation resistance must be 5 ΩM or over. (Measured with 500 V insulation resistance tester)					r)	
Temperature rise	nperature rise The temperature rise on the chuck work face must be below 15°C. (Powered on for 3 hours)					
Vater resistance When a chuck is immersed in water, no water must enter the inside or its insulation performance must not drop.					nust not drop.	
The she deale for the building and the second						

Note: The standards for the holding power and temperature rise vary depending on models

Standards of electromagnetic chucks

OVERVIEW OF MAGNETIC CHUCKS

Permanent magnetic chuck for electric discharge machine

Permanent electromagnetic chuck for cutting (An example of large size)

Permanent electromagnetic chuck for grinding (An example of large size)