CHUCK CONTROLLERS

Need of a chuck controller

Direct current (DC) is required to generate a magnetic force in the electromagnetic chuck. Also when demounting a workspace after machining, electrical demagnetization is required to reduce the residual holding power. For this purpose, an Electro Chuck Master or a chuck controller consisting of a rectifier and demagnetizer (Chuck Master dedicated to demagnetization and selector switch) is required.

- Rectifier: Rectifies an input from an alternating current (AC) power source to direct current (DC) and supplies it to the electromagnetic chuck.
- Demagnetizer: Once a workspace has been attached to the electromagnetic chuck, it cannot be demounted easily due to its residual holding power even when the power is turned off. The demagnetizer is used to eliminate the DC power from the rectifier and eliminate the residual magnetism.

Model EH-V

NON-CONTACT TYPE CHUCK MASTER*

- **Remote operation type**

[Application]

Rectifies an input from an AC power source to DC and outputs it to the electromagnetic chuck.

[Features]

- Developed as a non-contact type Chuck Master capable of outputting a constant voltage in a wide range of 100 VAC to 220 VAC and providing high-speed consistent demagnetization effect. Also various protective functions have been incorporated and individual alarm systems for individual alarms are provided to identify alarms easily.
- Because a relay (removable part) is not used, this model can be used continuously and withstand frequent ON/OFF operations.
- The holding power of the electromagnetic chuck can be controlled by adjusting the voltage.
- The rapid automatic demagnetization function is activated to reduce the residual holding power of the electromagnetic chuck.
- Many input/output signals are employed that can be utilized by connecting them to the pin terminal type terminal block in the case.
- Model EH-VE is a derived type of Model EH-V305A (operation unit incorporated) to which a remote operation box is attached for remote operation. For 10A operation, select model EH-VE210D.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Source</th>
<th>Output Voltage</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH-V305A</td>
<td>Single-phase 100~220 VAC (50/60Hz)</td>
<td>0~60 VDC 6A</td>
<td>170 (80.5)</td>
<td>260 (12.5)</td>
<td>17 (6.6)</td>
<td>4.4 kg (9.8 lb)</td>
</tr>
<tr>
<td>EH-V305A</td>
<td>Single-phase 200 VAC (50/60Hz)</td>
<td>0~60 VDC 10A</td>
<td>282 (11.1)</td>
<td>290 (11.4)</td>
<td>23 (8.9)</td>
<td>6.7 kg (14.7 lb)</td>
</tr>
</tbody>
</table>

Model ES-M

ELECTRO CHUCK MASTER*

- **[Application]**

Rectifies an input from an AC power source to DC and outputs it to the electromagnetic chuck. To eliminate the residual holding power of the electromagnetic chuck, the rapid automatic demagnetization function is activated.

- **[Features]**

- An interlock circuit is incorporated.
- Demagnetization is completed quickly by simply pressing the switch. The program has been designed to give a consistent demagnetizing effect within a short time.
- Model ES-M200B can be used on both input voltages of 100 VAC and 200 VAC.
- The noise resistant feature ensures consistent performance in certain noise environment.
- The DC output voltage is constant.
- The fundamental functions required to control electromagnetic chuck are incorporated neatly.

Precaution for use

Model ES-M200B is a low-cost, readily available type and therefore lacks some functions described above.

Model EST-1

ELECTRO CHUCK MASTER* STAND

- **[Application]**

A stand type mounting base that can be used for any types of small Chuck Masters such as ES-M305B and EH-V305A.

- **[Features]**

- Self-standing and easy installation.
- The mounting plate at the top rotates 360 degrees to enable adjustment after installation.
- A rectifier can also be mounted.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions</th>
<th>Mass</th>
<th>Applicable Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST-1</td>
<td>600 x 600 x 1,500 (23.68)</td>
<td>9.5 kg (21 lb)</td>
<td>EH-V305A, ES-M305B, M1003B, EPS-215B, RH-M102C</td>
</tr>
</tbody>
</table>
Model ES-V

ELECTRO CHUCK MASTER*

Application

An input from an AC power source is rectified to DC, which is output to electromagnetic chucks. The output voltage can be varied to control the holding power of electromagnetic chucks. The automatic demagnetization function is activated to reduce the residual magnetism of the electromagnetic chucks.

Features

- Suitable for large sized electromagnetic chucks and connecting type electromagnetic chucks that require a relatively large electric capacity.
- The low voltage range for variable output is very stable.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Source</th>
<th>Output Voltage (V)</th>
<th>Current (A)</th>
<th>Dimensions (mm)</th>
<th>Mass (kgf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-V220A</td>
<td>Single-phase 200 VAC/50/60Hz</td>
<td>0–90VDC</td>
<td>2A</td>
<td>100 (3.93) x 77 (3.03) x 106 (4.17)</td>
<td>1.6/2.2 lb</td>
</tr>
<tr>
<td>ES-V230A</td>
<td>Single-phase 200 VAC/50/60Hz</td>
<td>0–90VDC</td>
<td>3A</td>
<td>280 (11.0) x 140 (5.51) x 184 (7.24)</td>
<td>5.9/12 lb</td>
</tr>
</tbody>
</table>

Model KR

RECTIFIER FOR ELECTROMAGNETIC CHUCK

Model KR-N

Application

These rectifiers rectify an input from an AC power source to direct current and output it to electromagnetic chucks via a demagnetizer. They can also be used as a source to supply DC to electromagnetic holders.

Features

- The very compact size (volume reduced by 50% from our conventional models) saves installation space and can be installed in a control panel, too.
- Since this is connected to a magnet on the backside, connection time can be reduced substantially.
- External control terminals are provided as standard features for automatic operation by means of external contacts, etc.
- Power cable (2 m) and plug included.

Model KR-T

Application

These rectifiers rectify an input from an AC power source to direct current and output it to electromagnetic chucks via a demagnetizer. The output voltage can be varied to control the holding power of electromagnetic chucks.

Features

- Both 100 VAC and 200 VAC can be used.
- An output voltmeter is provided.
- The output can be varied in a wide range to provide a wide range of adjustment of the holding power.
- Power cable (2 m) included.

Model ESR

CHUCK MASTER* DEDICATED TO DEMAGNETIZATION

Model S-2A

SELECTION SWITCH FOR DEMAGNETIZATION

Application

A switch to relay DC output from the rectifier to electromagnetic chucks and is operated manually to select the output for demagnetization.

Features

- Easy installation and light weight. Simple and robust construction.
Selection Guide

■ Selecting an Electro Chuck Master
KANETEC’s Electro Chuck Master consists of a rectifier and electronically controlled demagnetization circuit. Residual magnetism varies largely depending on workpieces (material, shape, mass, etc.). It is therefore necessary to set the demagnetizing time (few seconds to over ten seconds) suitable for particular workpieces. The most effective demagnetizing patterns for each set time have been programmed in the computer to start automatic demagnetization by button operation. After studying whether the output required for magnetization may be constant or must be variable, select a model suitable for the rating of the electromagnetic chuck.

■ Selecting a rectifier
1. Select a suitable rectifier for installation in combination with a separate demagnetizer. (Connection diagram 2) Be sure to observe the following conditions: Voltage of electromagnetic chuck ≥ output voltage of rectifier Current of electromagnetic chuck < output current of rectifier
 <Example> Electromagnetic chuck 90 VDC, 0.8 A Output of rectifier 90 VDC, 1 A
2. When selecting a Chuck Master or rectifier dedicated to demagnetization, have an output voltage exceeding the rated voltage (90 V) of the electromagnetic chuck, special attention must be paid to the selection of the current capacity.
 <Example> Electromagnetic chuck 90 VDC, 4.5 A Rectifier output 0 to 120 V
 With the above combination, the maximum current of the rectifier is: 4.5A×120V=540A, thus a rectifier having output capacity 5A cannot be used.
3. Other considerations should include fluctuation of the voltage in the operation area. Select an output capacity with sufficient allowance.

■ Connection diagram

Diagram 1 Power source→
- Electro Chuck master
- Chuck
- Operation box

Diagram 2 Power source→
- Rectifier
- Demagnetizer
- Chuck

Diagram 3 Power source→
- Electro Chuck master
- Chuck

■ Selecting a demagnetizer
The use of a demagnetizer requires a rectifier. Select a rectifier, referring to "Selecting a rectifier."
The demagnetizer cannot be used along with the Electro Chuck Master.
The manual demagnetization types, Model S-2A and ESR-5A, cannot be connected to equipment other than a rectifier.

■ Selection based on electric capacity <Model selection>

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Power Source</th>
<th>DC Output Voltage</th>
<th>DC Output Current</th>
<th>Demag. Control</th>
<th>Rectifier</th>
<th>Demagnetizer</th>
<th>Chuck Rating</th>
<th>Max. Current</th>
<th>Connection Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro Chuck Master</td>
<td>EH-V305A</td>
<td>Single-phase 100 VAC, 220 VAC</td>
<td>50/60 Hz</td>
<td>6A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>4.5A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EH-V305A</td>
<td>Single-phase 100 VAC, 220 VAC</td>
<td>50/60 Hz</td>
<td>6A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>4.5A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EH-V210D</td>
<td>Single-phase 200 VAC</td>
<td>50/60 Hz</td>
<td>10A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>9.0A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES-V220A</td>
<td>Single-phase 200 VAC</td>
<td>50/60 Hz</td>
<td>10A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>18.0A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES-V230A</td>
<td>Single-phase 200 VAC</td>
<td>50/60 Hz</td>
<td>20A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>27.0A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES-M103B</td>
<td>Single-phase 100 VAC</td>
<td>50/60 Hz</td>
<td>10A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>2.7A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ES-M303B</td>
<td>Single-phase 100/200 VAC</td>
<td>50/60 Hz</td>
<td>20A</td>
<td>Auto</td>
<td>Not required</td>
<td>Not required</td>
<td>4.5A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chuck Master dedicated to demagnetization</td>
<td>ESR-N102</td>
<td>Single-phase 100 VAC</td>
<td>50/60 Hz</td>
<td>2A</td>
<td>Manual</td>
<td>KR-NX</td>
<td>KR-T</td>
<td>1.8A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Selector switch</td>
<td>S-2A</td>
<td>Max. 120 VDC</td>
<td>50/60 Hz</td>
<td>2A</td>
<td>Manual</td>
<td>KR-NX</td>
<td>KR-T</td>
<td>1.6A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rectifier</td>
<td>KR-N101A</td>
<td>Single-phase 100 VAC</td>
<td>50/60 Hz</td>
<td>1A</td>
<td>Manual</td>
<td>S-2A</td>
<td></td>
<td>0.9A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR-T201</td>
<td>Single-phase 100/200 VAC</td>
<td>50/60 Hz</td>
<td>1A</td>
<td>Manual</td>
<td>S-2A</td>
<td></td>
<td>0.8A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR-N103A</td>
<td>Single-phase 100 VAC</td>
<td>50/60 Hz</td>
<td>3A</td>
<td>Manual</td>
<td>ESR-5A</td>
<td></td>
<td>2.7A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR-T203</td>
<td>Single-phase 100/200 VAC</td>
<td>50/60 Hz</td>
<td>5A</td>
<td>Manual</td>
<td>ESR-5A</td>
<td></td>
<td>4.0A</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* The max. current of the applicable chuck must be the Chuck Master’s rated current × 0.9 or less. However, for the output voltage 120V, the max. current must be rated current × 0.8 or less.

■ Selection based on function <Model selection>

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Function</th>
<th>DC Output Voltage</th>
<th>DC Output Current</th>
<th>Demag. Control</th>
<th>Chuck Rated Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro Chuck Master</td>
<td>ES-V</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td></td>
<td>ES-M</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td></td>
<td>EH-V,VE</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td>Chuck Master dedicated to demagnetization</td>
<td>ESR-N102</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td></td>
<td>ESR-5A</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td>Rectifier</td>
<td>KR-N</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td></td>
<td>KR-T</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
<tr>
<td>Selector switch</td>
<td>S-2A</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
<td>∘</td>
</tr>
</tbody>
</table>
If your electromagnetic chuck failed, refer to this page. Symptoms, possible causes and corrective actions of two typical Chuck Masters are presented here. Please follow these instructions prior to asking for repair or purchasing parts.

![Electro Chuck Master](image1)
![Terminal Box](image2)

Residual holding power is large.
- Turn the demagnetization adjust variable resistor to a point where the maximum demagnetization effect can be obtained.

Holding power is weak.
- Set the excitation voltage adjust variable resistor at the maximum.
- If the holding power is still weak, the magnet being used may not be adequate for the shape, material or holding direction of workpieces.

Note: Since ES-M Series outputs a constant excitation voltage, it does not have the excitation voltage adjust variable resistor.

Model TB TERMINAL BOX

An example of integrating wires by use of a terminal box

1. Electro Chuck Master
2. Terminal box
3. Electromagnetic chucks connected

([Application]
When several electromagnetic chucks are connected and are to be controlled together by one unit of the Chuck Master, a terminal box is required that integrates wires from the chucks. Terminal boxes for 2 circuits up to 10 circuits are available.

TB-6PC

![TB-6PC diagram](image3)

Note: The number of "OUT" in the above figures varies according to the number of branches.

If the Chuck Master does not function properly, check it referring to the following table.

<table>
<thead>
<tr>
<th>EH-V305A</th>
<th>symptoms</th>
<th>cause</th>
<th>corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power is not being supplied</td>
<td>Fuse blows</td>
<td>Check the power source.</td>
<td></td>
</tr>
<tr>
<td>Power source is exceeding</td>
<td>Fuse blows</td>
<td>Remove the fuse from the fuse holder and replace it with a new one.</td>
<td></td>
</tr>
<tr>
<td>Output voltage has been tuned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring to electromagnetic chuck has been broken or shorted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation of electromagnetic chuck and its wiring is poor (ground)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES-M305B/103B</th>
<th>symptoms</th>
<th>cause</th>
<th>corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power is not being supplied</td>
<td>Fuse blows</td>
<td>Check the power source.</td>
<td></td>
</tr>
<tr>
<td>Power source is exceeding</td>
<td>Fuse blows</td>
<td>Remove the fuse from the fuse holder and replace it with a new one.</td>
<td></td>
</tr>
<tr>
<td>Wiring between Chuck Master and electromagnetic chuck is defective or electromagnetic chuck is faulty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation of electromagnetic chuck and its wiring is poor (ground)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Prior to checking/investigating causes, be sure to turn off the power and disconnect the power cable from the Chuck Master.
- Measure the insulation resistance of the electromagnetic chuck with an insulation resistance tester. Be sure it is above 5 M at a test voltage of 500 VDC.
- If the electromagnetic chuck failed, place an appropriate warning (such as attaching a tag of "Out of Order. Use Prohibited.") If the cause cannot be identified, please contact the manufacturer.*