Model **KMDY**
POWERFUL TABLE TYPE 3-PHASE AC DEMAGNETIZER

Strong magnetic field to enhance demagnetization effect!

![KMDY-1 Diagram](image)

[Application]
- Designed to remove or reduce residual magnetism by passing magnetized workpieces over the demagnetizing face.

[Features]
- The use of a 3-phase AC power source produces a more powerful magnetic field to effectively demagnetize workpieces having properties and shapes that are difficult to demagnetize with the conventional type.
- This demagnetizer especially exhibits its high-performance on ring-shaped workpieces such as bearing-assembled products and gears.
- The high heat dissipation design permits continuous operation.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Source</th>
<th>Power Capacity</th>
<th>Working Rate</th>
<th>Effective Demag. Width</th>
<th>Dimensions</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMDY-1</td>
<td>3-phase 200 VAC, 50/60 Hz</td>
<td>0.43/0.368VA/0.98/1.0 A±/1.8 BA (50/60Hz)</td>
<td>100% ED</td>
<td>140 (5.51)</td>
<td>200 (7.87) x 200 (7.87)</td>
<td>150 (5.90)</td>
</tr>
</tbody>
</table>

[Cable 2 m included.]

Model **KMDS**
DRIP-PROOF DEMAGNETIZER

![KMDS-2A Diagram](image)

[Application]
- These demagnetizers produce a strong magnetic field on the surface by use of an AC power source to demagnetize workpieces on a belt which runs over close to the surface.

[Features]
- The demagnetizers are of drip-proof construction. They will not fail if wetted by grinding fluid or cooling water.
- These can be incorporated in belt type grinders or other automatic and continuous grinders.
- The very strong demagnetizing force generates some margin for the clearance on the surface to allow a belt conveyor to run over the work face.

Precaution for use
- Cool these demagnetizers by splashing water at normal temperature. 50% rated when used dry. (20 minutes power on and 20 minutes pause)

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Source</th>
<th>Power Capacity</th>
<th>Working Rate</th>
<th>Dimensions</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMDS-1A</td>
<td>Single-phase 200 VAC, 50/60 Hz</td>
<td>200VA (1A)</td>
<td>50% ED</td>
<td>150 (5.90)</td>
<td>205 (8.0)</td>
</tr>
<tr>
<td>KMDS-2A</td>
<td>400VA (2A)</td>
<td>Continuous operation allowed when cooled by water.</td>
<td>200 (7.87)</td>
<td>200 (7.87)</td>
<td>120 (4.7)</td>
</tr>
<tr>
<td>KMDS-3A</td>
<td>800VA (4A)</td>
<td>4 (5.7)</td>
<td>350 (13.7)</td>
<td>120 (4.7)</td>
<td>4</td>
</tr>
</tbody>
</table>

[Cable 2 m included. @ No switch is incorporated. @ A different voltage type (special type) is also available.]

Model **KMD-F**
INVERTER CONTROLLED DEMAGNETIZER

Less electric power and enhanced demagnetizing performance!

Stronger magnetic field produced than standard table type!

![KMD-F20 Diagram](image)

[Application]
- These demagnetizers produce an alternating magnetic field on the surface by use of an AC power source, through which workpieces are passed to remove the magnetism remaining on their surface.

[Features]
- Demagnetization is carried out by varying (sweeping) a frequency lower than commercial frequencies from a lower point to a higher point. This design has improved the demagnetizing performance without increasing the amount of electricity to use.
- The demagnetizing section is of the same dimensions as the conventional table type demagnetizer (KMD-C). With the same output current (AC effective value) as the conventional model, the residual magnetism in workpieces (SHK material) can be reduced to one third.
- Workpieces are demagnetized by passing them over the demagnetizing surface at a constant speed, as with the conventional model.
- Continuous power on specification, but heat generated in the demagnetizing part is less than the conventional model.
- A demagnetizing output variable resistor is provided on the electrical unit that can vary the output current (AC effective value) in a range of 100% and 70%. This feature achieves demagnetization of low-carbon steel like S45C by less power (70%) than the conventional model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Source</th>
<th>Power Capacity</th>
<th>Output</th>
<th>Working Rate</th>
<th>Effective Demag. Width</th>
<th>Dimensions</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demagnetizing section</td>
<td>KMD-F20</td>
<td>Single-phase 100 VAC, 50/60 Hz</td>
<td>200VA (2.7A)</td>
<td>±20V MAX8A</td>
<td>100% ED</td>
<td>130 (5.11)</td>
<td>200 (7.87) x 120 (4.7)</td>
</tr>
<tr>
<td>Electrical unit</td>
<td>EHD-20A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>140 (5.51)</td>
<td>175 (6.89)</td>
<td>260 (10.2)</td>
</tr>
<tr>
<td>Demagnetizing section</td>
<td>KMD-F30</td>
<td>Single-phase 200 VAC, 50/60 Hz</td>
<td>400VA (3.4A)</td>
<td>±30V MAX7.5A</td>
<td>100% ED</td>
<td>180 (7.1)</td>
<td>300 (11.8)</td>
</tr>
<tr>
<td>Electrical unit</td>
<td>EHD-30A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>220 (8.66)</td>
<td>175 (6.89)</td>
<td>290 (11.4)</td>
</tr>
</tbody>
</table>

The main unit is provided with a 2 m cable.