#### Model PCMB Comparison of sanitary magnetic bars

| Type                    | Model   | Surface Max.<br>Magnetic Flux Density | Working Temp.<br>Upper Limit | Remarks                                                                       |
|-------------------------|---------|---------------------------------------|------------------------------|-------------------------------------------------------------------------------|
| Powerful                | PCMB    | 0.8 Tesla                             |                              | Standard type.                                                                |
| Fine pitch              | PCMB-AM | 1.0 Tesla                             | 80°C (176° F)                | Pole area increased by 1.5 times. Catch amount and collection rate increased. |
| Super powerful          | PCMB-A  |                                       |                              |                                                                               |
| Super powerful          | PCMB-UA | 1.2 Tesla                             |                              |                                                                               |
| Semi heat-resistant     | PCMB-QT | 0.8 Tesla                             | 150°C (302° F)               | Low cost type.                                                                |
| Heat-resistant powerful | PCMB-T  | 0.6 Tesia                             | 240°C (464° F)               | Highest working temperature upper limit in this Series.                       |
| neat-resistant powerful | PCMB-AT | 1.0 Tesla                             | 240 C (404 F)                | riighest working temperature upper limit in this Series.                      |
| Wear resistant          | PCMB-J  | 1.3 Tesla                             | 80°C (176° F)                | Highly resistant to wear and corrosion and longer life.                       |
| Double-pipe             | PCMBD-A | 0.8 Tesla                             | 00 C (170 F)                 | Double-pipe for easy cleaning of attracted iron powder.                       |

\*Note that if the separators are used in environment exceeding the working temperature upper limit, the attraction and holding power may drop due to reduction of magnetism.

# SANITARY MAGNETIC BAR



Suitable for installation as an iron-removing gate in powder materials transfer ducts or liquid passages and tanks. Can be incorporated flexibly to expand a range of applications.

#### [Features]

- High grade finish of sanitary specification.
- •Various lengths are available for a desired combination.
- High power magnetic bars: a powerful rare earth magnet having a property value of 1.2 T (12,000 G) or 1.35 T (13,500 G) or over is incorporated and the surface maximum magnetic flux density is 0.8 T (8,000 G) or 1 T (10,000 G) or over.
- Since a permanent magnet that maintains a strong magnetic force almost perpetually is used, the running cost can be reduced significantly.
- These are of waterproof construction to allow installation in liquid.
- To increase the rate of removal of metallic powder of very weak magnetism, PCMB-U type that has a surface magnetic flux density of 1.2 T (12,000 G) is also available.
- Special sizes are also available.

[mm(in)]

| Mod                 | aei              |            | Casi                      | ng Pipe  |                  | Built-in Permanent                               | Surface Max. Magnetic | Working Temp.    | Mass           |
|---------------------|------------------|------------|---------------------------|----------|------------------|--------------------------------------------------|-----------------------|------------------|----------------|
| Without tapped hole | With tapped hole | Length     | Diameter                  | Material | Surface finish   | Magnet                                           | Flux Density          | Upper Limit      | IVIGSS         |
| PCMB-10             | PCMB2-10         | 95(3.74)   |                           |          |                  |                                                  |                       |                  | 0.35kg/0.77 lb |
| PCMB-15             | PCMB2-15         | 145(5.70)  | φ25 <sup>**1</sup> (0.98) |          |                  |                                                  |                       |                  | 0.5 kg/1.10 lb |
| PCMB-20             | PCMB2-20         | 194(7.63)  |                           |          |                  | Nd rare earth type  Property value 1.2T(12,000G) | 0.8T<br>(8000G)       | 80°C<br>(176° F) | 0.7 kg/1.50 lb |
| PCMB-25             | PCMB2-25         | 244 (9.60) |                           | SUS304   | 4 #400<br>buffed |                                                  |                       |                  | 0.85kg/1.87 lb |
| PCMB-30             | PCMB2-30         | 295(11.6)  |                           |          |                  |                                                  |                       |                  | 1.05kg/2.31 lb |
| PCMB-35             | PCMB2-35         | 343(13.5)  |                           |          |                  |                                                  |                       |                  | 1.2 kg/2.64 lb |
| PCMB-40             | PCMB2-40         | 393(15.4)  |                           |          |                  |                                                  |                       |                  | 1.4 kg/3.08 lb |
| PCMB-50             | PCMB2-50         | 493(19.4)  |                           |          |                  |                                                  |                       |                  | 1.75kg/3.85 lb |
| PCMB-60             | PCMB2-60         | 592(23.3)  |                           |          |                  |                                                  |                       |                  | 2.1 kg/4.63 lb |

<sup>#</sup>A casing pipe of SUS316 is also available. #1 A casing pipe of  $\phi$ 19 is also available. \*For the models with tapped holes, the tapped hole is M6-P1.0 and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

## Super powerful magnetic bar

Powerful magnetic bar

[mm(in)]

| Mo                  | del              |            | Casi     | ng Pipe  |                | Built-in Permanent  | Surface Max. Magnetic | Working Temp. | Mass           |
|---------------------|------------------|------------|----------|----------|----------------|---------------------|-----------------------|---------------|----------------|
| Without tapped hole | With tapped hole | Length     | Diameter | Material | Surface finish | Magnet              | Flux Density          | Upper Limit   | IVIdSS         |
| PCMB-A15            | PCMB2-A15        | 145(5.70)  |          |          |                |                     |                       |               | 0.5 kg/1.10 lb |
| PCMB-A20            | PCMB2-A20        | 194(7.63)  |          |          |                |                     |                       |               | 0.7 kg/1.54 lb |
| PCMB-A25            | PCMB2-A25        | 244 (9.60) |          |          |                | Nd rare earth type  |                       |               | 0.9 kg/1.98 lb |
| PCMB-A30            | PCMB2-A30        | 295(11.6)  | φ25      | SUS304   |                |                     | 1T                    |               | 1.1 kg/2.42 lb |
| PCMB-A35            | PCMB2-A35        | 343(13.5)  | (0.98)   | 505304   |                | Property value      | (10000G)              |               | 1.2 kg/2.64 lb |
| PCMB-A40            | PCMB2-A40        | 393(15.4)  |          |          |                | 1.35T (13,500G)     |                       |               | 1.4 kg/3.08 lb |
| PCMB-A50            | PCMB2-A50        | 493(19.4)  |          |          |                |                     |                       |               | 1.8 kg/3.96 lb |
| PCMB-A60            | PCMB2-A60        | 592 (23.3) |          |          | #400           |                     |                       | 80°C          | 2.1 kg/4.63 lb |
| PCMB-U10A           | PCMB2-U10A       | 95 (3.74)  |          |          | #400<br>buffed |                     |                       | (176° F)      | 0.3 kg/0.66 lb |
| PCMB-U15A           | PCMB2-U15A       | 145(5.70)  |          |          | bulled         |                     |                       | (176 F)       | 0.5 kg/1.10 lb |
| PCMB-U20A           | PCMB2-U20A       | 194(7.63)  |          |          |                | Nd rare earth type  |                       |               | 0.7 kg/1.50 lb |
| PCMB-U25A           | PCMB2-U25A       | 244 (9.60) | φ25.1    |          |                | ind rare earth type | 1.2T                  |               | 0.9 kg/1.98 lb |
| PCMB-U30A           | PCMB2-U30A       | 295(11.6)  | (0.99)   | SUS316L  |                | Property value      | (12000G)              |               | 1.1 kg/2.42 lb |
| PCMB-U35A           | PCMB2-U35A       | 343(13.5)  | (0.99)   |          |                | 1.38T (13,800G)     | (12000G)              |               | 1.2 kg/2.64 lb |
| PCMB-U40A           | PCMB2-U40A       | 393(15.4)  |          |          |                | 1.301 (13,0000)     |                       |               | 1.4 kg/3.08 lb |
| PCMB-U50A           | PCMB2-U50A       | 493(19.4)  |          |          |                |                     |                       |               | 1.8 kg/3.96 lb |
| PCMB-U60A           | PCMB2-U60A       | 592 (23.3) |          |          |                |                     |                       |               | 2.1 kg/4.63 lb |

\*A casing pipe of SUS316 is also available, (Models PCMB-A) For the models with tapped holes, the tapped hole is M6-P1.0 and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased. If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

<sup>※</sup>In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased. If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

Fine pitch powerful magnetic bar

| Mod                 |                  |            |          | ng Pipe  |                | Built-in Permanent                                | Surface Max. Magnetic | Working Temp.    | Mass          |
|---------------------|------------------|------------|----------|----------|----------------|---------------------------------------------------|-----------------------|------------------|---------------|
| Without tapped hole | With tapped hole | Length     | Diameter | Material | Surface finish | Magnet                                            | Flux Density          | Upper Limit      |               |
| PCMB-AM10           | PCMB2-AM10       | 95(3.74)   |          |          |                |                                                   |                       |                  | 0.3kg/0.66 lb |
| PCMB-AM15           | PCMB2-AM15       | 145 (5.70) |          |          |                |                                                   |                       |                  | 0.5kg/1.10 lb |
| PCMB-AM20           | PCMB2-AM20       | 194 (7.63) |          |          |                | Nd rare earth type Property value 1.35T (13.500G) | 1T<br>(10000G)        | 80°C<br>(176° F) | 0.7kg/1.50 lb |
| PCMB-AM25           | PCMB2-AM25       | 244 (9.60) | φ25.1    | SUS316L  | ±400<br>buffed |                                                   |                       |                  | 0.9kg/1.98 lb |
| PCMB-AM30           | PCMB2-AM30       | 295 (11.6) |          |          |                |                                                   |                       |                  | 1.1kg/2.42 lb |
| PCMB-AM35           | PCMB2-AM35       | 343 (13.5) | (0.99)   |          |                |                                                   |                       |                  | 1.2kg/2.64 lb |
| PCMB-AM40           | PCMB2-AM40       | 393 (15.4) |          |          |                |                                                   |                       |                  | 1.4kg/3.08 lb |
| PCMB-AM50           | PCMB2-AM50       | 493 (19.4) |          |          |                | ,,                                                |                       |                  | 1.8kg/3.96 lb |
| PCMB-AM60           | PCMB2-AM60       | 592 (23.3) |          |          |                |                                                   |                       |                  | 2.1kg/4.63 lb |
|                     |                  |            |          |          |                |                                                   |                       |                  |               |

\*A casing pipe of SUS316 is also available. \*For the models with tapped holes, the tapped hole is M6-P1.0 \*In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

#### Semi heat-resistant powerful magnetic bar

| Mo                  | del              |            | Casi     | ng Pipe              |                    | Built-in Permanent                     | Surface Max. Magnetic | Working Temp.     | Mass           |
|---------------------|------------------|------------|----------|----------------------|--------------------|----------------------------------------|-----------------------|-------------------|----------------|
| Without tapped hole | With tapped hole | Length     | Diameter | Material             | Surface finish     | Magnet                                 | Flux Density          | Upper Limit       | IVIASS         |
| PCMB-QT10           | PCMB2-QT10       | 95(3.74)   |          |                      |                    |                                        |                       |                   | 0.35kg/0.77 lb |
| PCMB-QT15           | PCMB2-QT15       | 145 (5.70) |          |                      |                    |                                        |                       |                   | 0.5 kg/1.10 lb |
| PCMB-QT20           | PCMB2-QT20       | 194 (7.63) |          | φ25<br>(0,98) SUS304 |                    | Nd rare earth type Property value 1.1T | 0.8T<br>(8000G)       | 150°C<br>(302° F) | 0.7 kg/1.50 lb |
| PCMB-QT25           | PCMB2-QT25       | 244 (9.60) | 4.25     |                      | SUS304 #400 buffed |                                        |                       |                   | 0.85kg/1.87 lb |
| PCMB-QT30           | PCMB2-QT30       | 295 (11.6) | , .      |                      |                    |                                        |                       |                   | 1.05kg/2.31 lb |
| PCMB-QT35           | PCMB2-QT35       | 343 (13.5) | (0.98)   |                      |                    |                                        |                       |                   | 1.2 kg/2.64 lb |
| PCMB-QT40           | PCMB2-QT40       | 393 (15.4) |          |                      |                    | (11.000G)                              |                       |                   | 1.4 kg/3.08 lb |
| PCMB-QT50           | PCMB2-QT50       | 493 (19.4) |          |                      |                    | , ,,                                   |                       |                   | 1.75kg/3.85 lb |
| PCMB-QT60           | PCMB2-QT60       | 592 (23.3) |          |                      |                    |                                        |                       |                   | 2.1 kg/4.63 lb |

\*\*A casing pipe of SUS316 is also available. \*\*For the models with tapped holes, the tapped hole is M6-P1.0 \*\*In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased. and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

#### Heat-resistant powerful magnetic bar

[mm(in)]

| Mo                  | PCMB2-T10 95(<br>PCMB2-T15 145(<br>PCMB2-T20 194(<br>PCMB2-T20 244(<br>PCMB2-T30 295(<br>PCMB2-T30 393(<br>PCMB2-T40 393(<br>PCMB2-T40 393( |            | Casi     | ng Pipe  |                | Built-in Permanent                      | Surface Max. Magnetic | Working Temp. | Mass           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|----------------|-----------------------------------------|-----------------------|---------------|----------------|
| Without tapped hole | With tapped hole                                                                                                                            | Length     | Diameter | Material | Surface finish | Magnet                                  | Flux Density          | Upper Limit   | IVIdSS         |
| PCMB-T10            | PCMB2-T10                                                                                                                                   | 95(3.74)   |          |          |                |                                         |                       |               | 0.35kg/0.77 lb |
| PCMB-T15            | PCMB2-T15                                                                                                                                   | 145 (5.70) |          |          |                |                                         |                       |               | 0.5 kg/1.10 lb |
| PCMB-T20            | PCMB2-T20                                                                                                                                   | 194 (7.63) | ]        |          |                | Sm rare earth type                      |                       |               | 0.7 kg/1.50 lb |
| PCMB-T25            | PCMB2-T25                                                                                                                                   | 244 (9.60) | φ25      |          | #400           |                                         | 0.8T                  | 240℃          | 0.85kg/1.87 lb |
| PCMB-T30            | PCMB2-T30                                                                                                                                   | 295 (11.6) | · '      | SUS304   |                | Property value                          |                       |               | 1.05kg/2.31 lb |
| PCMB-T35            | PCMB2-T35                                                                                                                                   | 343 (13.5) | (0.98)   | (0.98)   | buffed         | 1.1T                                    | (8000G)               | (464° F)      | 1.2 kg/2.64 lb |
| PCMB-T40            | PCMB2-T40                                                                                                                                   | 393 (15.4) | ]        |          |                | (11.000G)                               |                       |               | 1.4 kg/3.08 lb |
| PCMB-T50            | PCMB2-T50                                                                                                                                   | 493 (19.4) | 1        |          |                | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                       |               | 1.75kg/3.85 lb |
| PCMB-T60            | PCMB2-T60                                                                                                                                   | 592 (23.3) | ]        |          |                |                                         |                       |               | 2.1 kg/4.63 lb |

\*\*A casing pipe of SUS316 is also available. \*\*For the models with tapped holes, the tapped hole is M6-P1.0 \*\*In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased. and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

## Heat-resistant super powerful magnetic bar

[mm(in)]

| Mo                  | del              |            | Casi     | ng Pipe  |                | Built-in Permanent                                  | Surface Max. Magnetic | Working Temp.     | Mass           |
|---------------------|------------------|------------|----------|----------|----------------|-----------------------------------------------------|-----------------------|-------------------|----------------|
| Without tapped hole | With tapped hole | Length     | Diameter | Material | Surface finish | Magnet                                              | Flux Density          | Upper Limit       | IVIASS         |
| PCMB-AT10           | PCMB2-AT10       | 95(3.74)   |          |          |                |                                                     |                       |                   | 0.35kg/0.77 lb |
| PCMB-AT15           | PCMB2-AT15       | 145 (5.70) |          |          |                |                                                     |                       |                   | 0.5 kg/1.10 lb |
| PCMB-AT20           | PCMB2-AT20       | 194 (7.63) |          |          |                | Sm rare earth type  Property value  1.2T  (12.000G) | 1T<br>(10000G)        | 240°C<br>(464° F) | 0.7 kg/1.50 lb |
| PCMB-AT25           | PCMB2-AT25       | 244 (9.60) | φ25.1    | SUS316L  | #400<br>buffed |                                                     |                       |                   | 0.85kg/1.87 lb |
| PCMB-AT30           | PCMB2-AT30       | 295 (11.6) | (0.99)   |          |                |                                                     |                       |                   | 1.05kg/2.31 lb |
| PCMB-AT35           | PCMB2-AT35       | 343 (13.5) | (0.99)   |          |                |                                                     |                       |                   | 1.2 kg/2.64 lb |
| PCMB-AT40           | PCMB2-AT40       | 393 (15.4) |          |          |                |                                                     |                       |                   | 1.4 kg/3.08 lb |
| PCMB-AT50           | PCMB2-AT50       | 493 (19.4) |          |          |                |                                                     |                       |                   | 1.75kg/3.85 lb |
| PCMB-AT60           | PCMB2-AT60       | 592 (23.3) |          |          |                |                                                     |                       |                   | 2.1 kg/4.63 lb |

\*A casing pipe of SUS316 is also available. \*For the models with tapped holes, the tapped hole is M6-P1.0 \*In order to increase the surface magnetic flux density, the wall thickness of the pipe needs to be decreased. and 7 mm deep, located in the center on each end face. A model of M5, M8, M10 or M12 is also available.

If it is decreased, however, the strength may drop or the pipe may be deformed or broken. Therefore, for the safety reason, pipes of thickness thinner than the current thickness will not be manufactured.

# **WEAR-RESISTANT SANITARY MAGNETIC BAR**

# Magnetic force exceeding 1.3 Tesla!

PCMB2-J20A

An example of incorporation of PCMB-J

- ●The stainless steel surface has been treated by KANETEC's original technology to provide high resistance to wear and corrosion.
- The surface is hardly susceptible to scratches and thus remains polished and glossy, requiring less frequent replacement for economical operations.

[mm(in)]

| Mod                 | del              |            | Casir    | ng Pipe  |                | Built-in Permanent | Surface Max.          | Working Temp. | Mass          |
|---------------------|------------------|------------|----------|----------|----------------|--------------------|-----------------------|---------------|---------------|
| Without tapped hole | With tapped hole | Length     | Diameter | Material | Surface finish | Magnet             | Magnetic Flux Density | Upper Limit   | IVIdSS        |
| PCMB-J10A           | PCMB2-J10A       | 95 (3.74)  |          |          |                |                    |                       |               | 0.3kg/0.66 lb |
| PCMB-J15A           | PCMB2-J15A       | 145 (5.70) |          |          | #400           | Nd rare earth type |                       |               | 0.5kg/1.10 lb |
| PCMB-J20A           | PCMB2-J20A       | 194 (7.63) | 4240     | p 24.8   | buffed         |                    | 1.3T                  | 80℃           | 0.7kg/1.50 lb |
| PCMB-J25A           | PCMB2-J25A       | 244 (9.60) |          | SUS316L  | +              | Property value     |                       |               | 0.9kg/1.98 lb |
| PCMB-J30A           | PCMB2-J30A       | 295 (11.6) | (0.97)   | (0.97)   | Titanium       | 1.4T               | (13000G)              | (176° F)      | 1.1kg/2.42 lb |
| PCMB-J35A           | PCMB2-J35A       | 343 (13.5) |          |          | coating        | (14.000G)          |                       |               | 1.2kg/2.64 lb |
| PCMB-J40A           | PCMB2-J40A       | 393 (15.4) |          |          |                | , ,,               |                       |               | 1.4kg/3.08 lb |

# Model PCMBD-A SUPER POWERFUL MAGNETIC BAR (DOUBLE-PIPE)



| - |
|---|
|---|

| Model     | Surface  | Surface | Surface Max. Magnetic  | Working Temp. |               | Dimer         | nsions |        | Mass             |
|-----------|----------|---------|------------------------|---------------|---------------|---------------|--------|--------|------------------|
| Model     | Material | Finish  | Flux Density           | Upper Limit   | L             | l             | G      | D      | IVIASS           |
| PCMBD-A13 |          |         |                        |               | 216<br>(8.50) |               | 83     | 24     | 0.8kg/<br>1.7 lb |
| PCMBD-A20 | SUS      | #400    | 0.8 T<br>(8000 G) min. | 80°C (176°F)  | 285<br>(11.2) |               | (3.26) | (0.94) | 1.1kg/<br>2.4 lb |
| PCMBD-A25 | 304      | buffed  |                        | 800(1701)     | 352<br>(13.8) | 244<br>(9.60) | 100    | 28     | 1.3kg/<br>2.8 lb |
| PCMBD-A30 |          |         |                        |               | 403<br>(15.8) | 295<br>(11.6) | (3.93) | (1.10) | 1.5kg/<br>3.3 lb |

\*A type having a surface maximum magnetic flux density of 0.95 T (9500 G) is also available. (Optional)

#### [Application]

Most suitable for cleaning places where a relatively large amount of iron powder, etc. is mixed.

#### [Features]

- Since these bars are of double-pipe type, attracted iron powder smoothly drops when the magnetic bar is pulled out.
- ●The outer pipe and the magnetic bar have a flange. When the magnetic bar is housed, the two flanges become one piece to prevent intrusion of foreign matter to the inside of the magnetic bar and to prevent the magnetic bar from coming out.
- The magnetic bar has an easy-to-hold plastic grip.



# SANITARY MAGNETIC BAR WITH STAND





# [Features]

The sanitary magnetic bar (PCMB) is provided with a stand. Can be installed in a liquid tank for collection and removal of iron particles.

## Powerful type

| mm | (in) | ] |
|----|------|---|
|    |      |   |

| Model    | Dimensi    | ions          | Material   | Surface      | Finish                 | Built-in Permanent | Surface Max.          | Working Temp.  | Mass           |
|----------|------------|---------------|------------|--------------|------------------------|--------------------|-----------------------|----------------|----------------|
| Model    | Α          | В             | ivialeriai | Magnetic bar | Stand                  | Magnet             | Magnetic Flux Density | Upper Limit    | IVIdSS         |
| PCMB-S20 | 194 (7.63) |               |            |              |                        | Nd rare earth type |                       | 0.000          | 0.6kg/1.32 lb  |
| PCMB-S25 | 244 (9.60) | φ25<br>(0.98) |            | #400 buffed  | Electrolytic polishing | Property value     | 0.8T<br>(8000G)       | 80℃<br>(176°F) | 0.65kg/1.43 lb |
| PCMB-S30 | 295 (11.6) | (0.00)        |            |              | ponorming              | 1.2 T (12,000 G)   | (00004)               | (1701)         | 0.7kg/1.50 lb  |

## Heat-resistant powerful type

#### [mm(in)]

| Model     | Dimensi                    | ions   | Material | Surface      | Finish       | Built-in Permanent | Surface Max.          | Working Temp. | Mass          |     |     |   |               |  |          |             |   |                |                  |                |
|-----------|----------------------------|--------|----------|--------------|--------------|--------------------|-----------------------|---------------|---------------|-----|-----|---|---------------|--|----------|-------------|---|----------------|------------------|----------------|
| iviodei   | Α                          | В      | Material | Magnetic bar | Stand        | Magnet             | Magnetic Flux Density | Upper Limit   | IVIdSS        |     |     |   |               |  |          |             |   |                |                  |                |
| PCMB-TS20 | 194 (7.63)                 | φ25    |          |              | Electrolytic | Sm rare earth type | 0.8T                  | 240℃          | 0.6kg/1.32 lb |     |     |   |               |  |          |             |   |                |                  |                |
| PCMB-TS25 | 244 (9.60)                 | · '    |          |              | · '          |                    |                       |               | ·             | · · | · ' | , | φ23<br>(0.98) |  | . SUS304 | #400 buffed | 1 | Property value | (8000G) (464° F) | 0.65kg/1.43 lb |
| PCMB-TS30 | PCMB-TS30 295 (11.6) (0.98 | (0.98) |          |              | polishing    | 1.1 T (11,000 G)   | (0000G)               | (404 F)       | 0.7kg/1.50 lb |     |     |   |               |  |          |             |   |                |                  |                |

#### Super powerful type

#### [mm(in)]

| Model     | Dimensions           |        | Material | Surface      | Finish       | Built-in Permanent | Surface Max.          | Working Temp. | Mass           |  |
|-----------|----------------------|--------|----------|--------------|--------------|--------------------|-----------------------|---------------|----------------|--|
| iviodei   | Α                    | В      | Material | Magnetic bar | Stand        | Magnet             | Magnetic Flux Density | Upper Limit   | IVIdSS         |  |
| PCMB-AS20 | 194 (7.63)           | 4.05   |          |              | Flootrolutio | Nd rare earth type | 4.T                   | 80℃           | 0.6kg/1.32 lb  |  |
| PCMB-AS25 | 244 (9.60)           | φ25    | SUS304   | #400 buffed  | Electrolytic | Property value     | (100000)              | (176°F)       | 0.65kg/1.43 lb |  |
| PCMB-AS30 | PCMB-AS30 295 (11.6) | (0.98) |          |              | polishing    | 1.35 T (13,500 G)  | (10000G)              | (176 F)       | 0.7kg/1.50 lb  |  |

# Model PCMB-K CLEANER TO REMOVE IRON POWDER ON MAGNETIC BAR











## [Application]

A cleaner to remove iron powder on a sanitary magnetic bar.

- ■A groove is provided to receive iron powder so that it does not scatter.
- •When this is installed on each end of a sanitary magnetic bar, they serve as a stand also.

| Model    | Casing<br>(Material) | Applicable Magnetic Bar Dia. |  |  |  |  |
|----------|----------------------|------------------------------|--|--|--|--|
| PCMB-K25 | Teflon               | φ25(0.98)                    |  |  |  |  |

# **POWERFUL MAGNETIC SEPARATORS**

An example of flow of removing magnetized foreign matter



# Model PCMG POWERFUL RECTANGULAR GRID TYPE MAGNETIC BAR UNIT



#### [Application]

A unit consisting of powerful magnetic bars arranged in a grid. It is used to remove iron from various granular materials when they fall in rectangular ducts. It can also be placed or suspended in a liquid tank to remove iron.

#### [Features]

- High grade finish of sanitary specification.
- Various sizes are available to meet various duct sizes.
- High power magnetic bars: a powerful rare earth magnet having a property value of 1.2 T (12,000 G) or 1.35 T (13,500 G) or over is incorporated and the surface maximum magnetic flux density is 0.8 T (8,000 G) or 1 T (10,000 G) or over.
- Since permanent magnets that maintain a strong magnetic force almost perpetually are used, the running cost can be reduced
- ■These are of waterproof construction to allow installation in liquid.





**Magnets in action** behind delicious bread and sense of security.

## Powerful rectangular grid type magnetic bar unit

[mm(in)]

| Processing | [                                                      | Dimensions                                                           |                                                                                                                             |                                                                                         | Applicable Magnetic Bar                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                                               | ing                                                                                                                                                                    | Surface Max.                                                                                                                                                                                                                                                                  | Working Temp.                                                                                                                                                                                                                                                                                                                  | Mace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|------------|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Capacity   | В                                                      | L                                                                    | Н                                                                                                                           | Dia.                                                                                    | Magnet used                                                                                                                                               | Qty                                                                                                                                                                                                                | Material                                                                                                                                                                                                      | Finish                                                                                                                                                                 | Magnetic Flux Density                                                                                                                                                                                                                                                         | Upper Limit                                                                                                                                                                                                                                                                                                                    | IVIASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nemarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| 6m³/h      | 104(7.00)                                              | 194 (7.63)                                                           |                                                                                                                             |                                                                                         |                                                                                                                                                           | 4                                                                                                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                | 3 kg/ 6.6 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 8m³/h      | 194 (7.63)                                             | 244 (0.60)                                                           | 044(0.00)                                                                                                                   |                                                                                         |                                                                                                                                                           | 4                                                                                                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                | 3.6kg/ 7.9 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 10m³/h     | 244(0.60)                                              |                                                                      |                                                                                                                             |                                                                                         | 65 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                  | Property value                                                                                                                                                                                                     | -                                                                                                                                                                                                             | SUS304                                                                                                                                                                 | #400<br>buffed                                                                                                                                                                                                                                                                | 0.8T<br>(8000G)                                                                                                                                                                                                                                                                                                                | 80°C<br>(176° F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5kg/ 9.9 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SUS316<br>version also<br>available. |
| 12m³/h     | 244 (9.60)                                             |                                                                      |                                                                                                                             |                                                                                         |                                                                                                                                                           |                                                                                                                                                                                                                    | 5                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.4kg/11.9 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 14m³/h     | 005(11.0)                                              |                                                                      | 295(11.6)                                                                                                                   | (2.00)                                                                                  | (0.50)                                                                                                                                                    |                                                                                                                                                                                                                    | _                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5kg/14.3 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 18m³/h     | 293(11.6)                                              | 295(11.6)                                                            | 202(15.4)                                                                                                                   | ]                                                                                       |                                                                                                                                                           | (12,000 d)                                                                                                                                                                                                         | 0                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2kg/18.1 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 24m³/h     | 393 (15.4)                                             | 393 (15.4)                                                           | 93(15.4)                                                                                                                    |                                                                                         |                                                                                                                                                           | 8                                                                                                                                                                                                                  | 8                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                | 12 kg/26.4 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| ,          | Capacity  6m³/h  8m³/h  10m³/h  12m³/h  14m³/h  18m³/h | Capacity B  6 m³/h 6 8m³/h 6 10m³/h 12m³/h 114m³/h 118m³/h 295(11.6) | Capacity B L  6 m³/h 194(7.63) 10m³/h 112m³/h 14m³/h 18m³/h 295(11.6)  Capacity B L 194(7.63) 244(9.60) 244(9.60) 295(11.6) | Capacity B L H  6 m³/h 194 (7.63) 244 (9.60) 12m³/h 14m³/h 18m³/h 295 (11.6) 295 (11.6) | Capacity B L H Dia.  6 m³/h 8 m³/h 194 (7.63) 244 (9.60) 12m³/h 14m³/h 18m³/h 295 (11.6)  Capacity B L H Dia.  194 (7.63) 244 (9.60) 244 (9.60) 65 (0.98) | Capacity B L H Dia. Magnet used  6m³/h 194 (7.63) 244 (9.60) 12m³/h 14m³/h 295 (11.6) 295 (11.6)  Capacity B L H Dia. Magnet used 194 (7.63) 244 (9.60) 244 (9.60) 255 (0.98)  Nd rare earth type 1.2 T (12,000 G) | Capacity B L H Dia. Magnet used Qty  6m³/h 6 8m³/h 6 10m³/h 12m³/h 114m³/h 118m³/h 295(11.6)  Capacity B L H Dia. Magnet used Qty  4 Nd rare earth type 5 (0.98)  Property value 1.2 T (12,000 G) 6 393(15.4) | Capacity B L H Dia. Magnet used Qty Material    6m³/h   194 (7.63)   244 (9.60)   244 (9.60)   12m³/h   295 (11.6)   295 (11.6)   393 (15.4)   393 (15.4)   393 (15.4) | Capacity B L H Dia. Magnet used Qty Material Finish  6 m³/h 6 8m³/h 194(7.63) 244(9.60) 112m³/h 124m³/h 114m³/h 295(11.6) 295(11.6) 393(15.4)  Capacity B L H Dia. Magnet used Qty Material Finish  4 Nd rare earth type Property value 1.2 T (12,000 G) 6 SUS304 #400 buffed | Capacity B L H Dia. Magnet used Qty Material Finish Magnetic Flux Density  6 m³/h 6 8 m³/h 6 10 m³/h 1244(9.60) 12m³/h 12m³/h 1244(9.60) 14m³/h 18m³/h 295(11.6) 295(11.6) 393(15.4)  Ragnet used Qty Material Finish Magnetic Flux Density  4 Nd rare earth type Froperty value 1.2 T (12,000 G) 6 SUS304 #400 buffed (8000G) | Capacity B L H Dia. Magnet used Qty Material Finish Magnetic Flux Density Upper Limit    6m³/h   194 (7.63)   244 (9.60)   244 (9.60)   12m³/h   244 (9.60)   12m³/h   295 (11.6)   295 (11.6)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15 | Capacity B L H Dia. Magnet used Qty Material Finish Magnetic Flux Density Upper Limit    Gm³/h   194 (7.63)   244 (9.60)   10m³/h   12m³/h   295 (11.6)   295 (11.6)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15.4)   393 (15 |                                      |

<sup>※</sup>A 2-stage type or a type with frame is also available upon request.

#### Heat-resistant powerful rectangular grid type magnetic bar unit

[mm(in)]

| Model      | Processing | [          | Dimensions |            | Applicable Magnetic Bar |                     |            | Casing       |               | Surface Max.                      | Working Temp. | Mass          | Remarks        |                 |                   |               |
|------------|------------|------------|------------|------------|-------------------------|---------------------|------------|--------------|---------------|-----------------------------------|---------------|---------------|----------------|-----------------|-------------------|---------------|
|            | Capacity   | В          | L          | Н          | Dia.                    | Magnet used         | Qty        | Material     | Finish        | Magnetic Flux Density             | Upper Limit   | IVIdSS        | nemarks        |                 |                   |               |
| PCMG-T2020 | 6m³/h      | 104(7.63)  | 94 (7.63)  | 194(7.63)  |                         |                     |            |              | 3 kg/ 6.6 lb  |                                   |               |               |                |                 |                   |               |
| PCMG-T2025 | 8m³/h      | 194 (7.03) |            |            |                         |                     | 4          |              |               |                                   |               | 3.6kg/ 7.9 lb |                |                 |                   |               |
| PCMG-T2525 | 10m³/h     | 244 (9.60) |            | 244 (9.60) | 244 (9.00)              | 244 (9.00)          | 244 (3.00) |              | φ25<br>(0.98) | Sm rare earth type Property value | _             | SUS304        | #400<br>buffed | 0.8T<br>(8000G) | 240°C<br>(464° F) | 4.5kg/ 9.9 lb |
| PCMG-T2530 | 12m³/h     | 244 (9.60) | 005 (44.0) | 005 (11.0) | 005 (11.0)              | 005(44.0)           | 005(44.0)  | 65<br>(2.55) |               |                                   | 5             |               |                |                 |                   | 5.4kg/11.9 lb |
| PCMG-T3030 | 14m³/h     | 295 (11.6) | 250(11.0)  | (2.00)     | (0.00)                  | 1.1 T<br>(11,000 G) | 6          |              | ballea        | (00004)                           | (404-17)      | 6.5kg/14.3 lb | -              |                 |                   |               |
| PCMG-T3040 | 18m³/h     |            | 202(15.4)  | ]          |                         | (11,000 d)          | 0          |              |               |                                   |               | 8.2kg/18.1 lb |                |                 |                   |               |
| PCMG-T4040 | 24m³/h     | 393 (15.4) | 393 (15.4) |            |                         |                     | 8          |              |               |                                   |               | 12 kg/26.4 lb |                |                 |                   |               |

<sup>%</sup> A 2-stage type or a type with frame is also available upon request.

### Super powerful rectangular grid type magnetic bar unit

[mm(in)]

| Model      | Processing | Dimensions Applicable Magnetic Bar C |            |            |            | Casi               | ing              | Surface Max.   | Working Temp. | Mass                  | Remarks        |                |                  |               |               |               |            |
|------------|------------|--------------------------------------|------------|------------|------------|--------------------|------------------|----------------|---------------|-----------------------|----------------|----------------|------------------|---------------|---------------|---------------|------------|
|            | Capacity   | В                                    | L          | Н          | Dia.       | Magnet used        | Qty              | Material       | Finish        | Magnetic Flux Density | Upper Limit    | IVIdSS         | nemarks          |               |               |               |            |
| PCMG-A2020 | 6m³/h      | 194 (7.63)                           | 194 (7.63) |            |            |                    | 4                |                |               |                       |                | 3 kg/ 6.6 lb   |                  |               |               |               |            |
| PCMG-A2025 | 8m³/h      | 194 (7.63)                           |            | 244 (9.60) |            |                    |                  | 4              |               |                       |                |                | 3.6kg/ 7.9 lb    |               |               |               |            |
| PCMG-A2525 | 10m³/h     | 244 (9.60)                           | 244 (9.60) |            |            | Nd rare earth type | _                |                |               |                       | 0.000          | 4.5kg/ 9.9 lb  | SUS316           |               |               |               |            |
| PCMG-A2530 | 12m³/h     |                                      |            | 295 (11.6) | (0.55)     | 65<br>(2.55)       | $\phi 25$ (0.98) | Property value | 5             | SUS304                | #400<br>buffed | 1T<br>(10000G) | 80°C<br>(176° F) | 5.4kg/11.9 lb | version also  |               |            |
| PCMG-A3030 | 14m³/h     |                                      | 295(11.6)  |            |            |                    | 295(11.6)        | 295(11.6)      | (0.00)        | 1.35 T<br>(13,500 G)  | 6              |                | Danied           | (100000)      | (170 17       | 6.5kg/14.3 lb | available. |
| PCMG-A3040 | 18m³/h     |                                      |            | 393 (15.4) | ]          |                    | (10,000 a)       | 0              |               |                       |                |                | 8.2kg/18.1 lb    |               |               |               |            |
| PCMG-A4040 | 24m³/h     | 393 (15.4)                           | 393 (15.4) | 393 (15.4) | 393 (15.4) | 393 (15.4)         |                  |                |               | 8                     |                |                |                  |               | 12 kg/26.4 lb |               |            |